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PORTFOLIO SELECTION USING POWER LAW WITH 

EXPONENTIAL CUT-OFF UTILITY FUNCTION 

 

 
  Abstract. This paper considers the optimal portfolio selection problem in a 

multiple period setting where the investor maximizes the expected utility of the 

terminal wealth based on the Power law with exponential cut-off (PLEC) utility 

function, in a stochastic market. Optimal portfolio selection in a multi-period 

setting where risk preferences are allowed to change in every period is discussed. 

The change in the market conditions is modelled according to a Markov Chain. 

Dynamic programming approach is used to obtain the solution of the optimal 

policy and the corresponding value function is applied. The applicability of PLEC 

utility is demonstrated here, in order to obtain an optimal policy which depends on 

the wealth invested and also on the period of investment along with the state of the 

market. The focus is on using the different PLEC utility functions for representing 

various investors of the market.  

  Keywords: Portfolio optimization, Markov chain, Dynamic Programming, 

PLEC utility, risk preferences. 
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1. Introduction 

  All financial investments involve complex decision making criteria within 

themselves. The decision, as to how the given wealth for investment will be 

distributed among the various available financial instruments, is a very tough one. 

Every investor wants to make his portfolio an optimum one, taking into 

consideration the market conditions and his risk preference. The manner in which 

one can arrive at an optimum decision differs from scenario to scenario. Different 
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investors may have different end goals and different preferences towards financial 

instruments. Their decision also depends on their wealth and time. In order to 

achieve these goals various methods have been developed. In the pioneering work 

by Markowitz (1952), minimizing the variance of the returns of the assets, in order 

to obtain the best portfolio optimization decision, was suggested. However it 

suffers with a few drawbacks particularly of not taking the investors’ time horizon 

into consideration. Merton (1969) and Merton (1971) have corrected some of his 

errors.  

  Classical method of optimization depends only on mean and variances of 

returns; however, this does not take into account investors preferences and the 

amount of wealth to be invested. Optimization of a portfolio based on utility 

functions of investors will be rather more appropriate and has been considered 

recently. A utility function is non-decreasing, real valued function defined on real 

numbers. Since Bernoulli (1954) has given importance to the use of utility 

functions as a basis for investment decisions, their use have increased 

tremendously. In the recent years a lot of new forms of utility functions have been 

developed which can exhibit one or more risk preferences within its form, for 

various parameter values. Although constant relative risk aversion (CRRA) is the 

most widely used risk preference structure, its use in the real world is often limited 

as discussed by Xie(2000). Similarly, it has been argued by Pratt (1964) that utility 

functions exhibiting decreasing absolute risk aversion (DARA) are most 

appropriate to model people’s preferences. However there are very less empirical 

evidences on this. Similar conclusions are reached in the past when people have 

tried to claim that sticking to one kind of preference structure is “better” to model 

investor behaviour. Hence, one requires a utility function which is not limited in 

use and can represent a larger section of investors with varied and mixed risk 

attitudes. 

  Some of the commonly used utility functions are quadratic utility, power 

utility, logarithmic utility and exponential utility as highlighted by Sharpe (2007). 

Among the new lot of utility functions the most prominent ones are the Expo-

power utility by Saha (1993), which can exhibit all forms of Absolute risk aversion 

(ARA) and the Relative risk aversion (RRA) measures, Power risk aversion (PRA) 

utility by Xie (2000), which can exhibit Constant absolute risk aversion (CARA) 

and CRRA, A new utility function called the PLEC utility is suggested by Arif and 

Pakkala (2014), which incorporates all most all the risk preference structures of 

investors as described by Pratt (1964) and Arrow (1965). 

  Many have worked with utility functions in order to obtain an optimal 

solution to the portfolio problem. Mossin (1968) has examined utility functions 

leading to myopic policies; Merton (1969) considered special utility functions with 

logarithmic and power structures. In a survey paper by Steinbach (2001), 208 

papers, which show the diversity of different models and approaches used to 
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analyze this problem of optimum portfolio based on utility functions, for both 

single period and multi-period cases, are reviewed. As highlighted by Çanakoğlu 

and Özekici (2010) a huge amount of work is done in this direction by a number of 

academicians. 

  In a multi-period setting, as highlighted by Çelikyurt and Özekici(2007), 

Çanakoğlu and Özekici (2009) and Çanakoğlu and Özekici (2010), the assumption 

of uncorrelated asset returns is not realistic. One may achieve this dependence or 

correlation through a stochastic market process, like a Markov chain, which affects 

all deterministic and probabilistic parameters of the model. Solution of these 

models is given through dynamic programming techniques.  

Here we show that the PLEC utility can be used to model various 

possibilities of the real world. It is also shown that an optimum solution for the 

portfolio problem exists and is obtained through dynamic programming for a multi 

period set up. We have chosen this utility in particular because of the fact that it 

can exhibit all the risk preference structures of different types of investors. This 

way we can remove any bias occurring in the solution, due to the use of different 

utility functions. 

  Section 2 describes the basic notations and assumptions on the market in 

this study. Section 3 gives a brief introduction on the PLEC utility function. In 

section 4an example is presented through which, sections of the market utility 

function is represented through different PLEC utility functions. In section 5, the 

various models that can be incorporated using the PLEC utility function are studied 

and also it is shown that the optimum solution for these models exists. In Section 6, 

the solution of the dynamic problem equation for the different models mentioned 

above is worked out. Section 7 contains illustrations based on the above models 

solved through dynamic programming technique. Section 8 consists of the 

conclusions.    

 

2. Model description and assumptions on the market 

The returns of the assets of a portfolio change continuously in a random 

fashion. Distributions such as normal and lognormal have been used to model 

them. The variation occurring in them may be due to internal as well as external 

factors. These factors could be at a local and/or at a global level. Investment 

decisions are affected by these factors as well as the correlation among asset 

returns. Modelling a stochastic financial market by a Markov chain is a reasonable 

approach in this situation as highlighted by Çanakoğlu and Özekici (2009). They 

argue that recently there is growing interest in the literature, to use a stochastic 

market process, in order to modulate various parameters of the financial model, 

hence making it more realistic. They also point out that continuous-time Markov 

chains with a discrete state space are used in a number of papers including, for 

example, Bäuerle and Rieder (2004) and Yin and Zhou (2004), to modulate model 
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parameters in portfolio selection and stock trading problems. Hernández-

Hernández and Marcus (1999), Bielecki et al. (1999) and Nagai and Peng (2002) 

are a few others who have done similar work in this area. 

 

2.1. Wealth Dynamics Equation 

Suppose that the state of the market in period n is denoted by 𝑌𝑛and𝑌 =
{𝑌𝑛 ; 𝑛 = 0,1,2, … } is aMarkov chain with a discrete state space, E and transition 

matrix, Q. Let R(i) denote the random vector of asset returns in any period given 

that the stochastic market is in state i. The means, variances and covariance of asset 

returns depend only on the current state of the stochastic market. The market 

consists of one riskless asset with known return 𝑟𝑓(𝑖) and standard 

deviation𝜎𝑓(𝑖) = 0; and m risky assets with random returns 𝑅𝑛(𝑖) =

(𝑅1
𝑛(𝑖), 𝑅2

𝑛(𝑖), … , 𝑅𝑚
𝑛 (𝑖)) in period n if the state of the market is i. We assume that 

the random returns in consecutive periods are conditionally independent given the 

market states. In other words, 𝑅𝑛(𝑖) is independent of  𝑅𝑘(𝑗) for all periods 𝑘 ≠ 𝑛 

and states i and j. Moreover, 𝑅𝑛(𝑖) and  𝑅𝑘(𝑖) are independent and identically 

distributed random vectors whenever 𝑘 ≠ 𝑛 This implies that the distributions of 

the asset returns depend only on the state of the market independent of time. For 

this reason, we will let 𝑅(𝑖) = 𝑅𝑛(𝑖) denote the random return vector in any period 

n to simplify the notations here. 

Let 𝑟𝑘(𝑖) = 𝐸[𝑅𝑘(𝑖)] denote the mean return of the kth asset in state i and 

𝜎𝑘𝑗(𝑖) = 𝐶𝑜𝑣 (𝑅𝑘(𝑖), 𝑅𝑗(𝑖))denote the covariance between kth and jth asset returns 

in state i. The excess return of the kth asset in state iis𝑅𝑘
𝑒(𝑖) = 𝑅𝑘(𝑖) − 𝑟𝑓(𝑖). It 

follows that, 

𝑟𝑘
𝑒(𝑖) = 𝐸[𝑅𝑘

𝑒(𝑖)] = 𝑟𝑘(𝑖) − 𝑟𝑓(𝑖) 

𝜎𝑘𝑗(𝑖) = 𝐶𝑜𝑣 (𝑅𝑘
𝑒(𝑖), 𝑅𝑗

𝑒(𝑖)) 

The notation here is such that 𝑟𝑓(𝑖)is a scalar and 𝑟(𝑖) =

(𝑟𝑖(𝑖), 𝑟2(𝑖), … , 𝑟𝑚(𝑖))and 𝑟𝑒(𝑖) = (𝑟1
𝑒(𝑖), 𝑟2

𝑒(𝑖), … , 𝑟𝑚
𝑒 (𝑖))are column vectors for 

all i.  

Let Xn denote the amount of investor’s wealth at period n and let the vector 

𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑚,) denote the amounts invested in risky assets (1, 2, ..., m) 

respectively. Given any investment policy, the stochastic evolution of the 

investor’s wealth follows the so-called wealth dynamics equation, 

𝑋𝑛+1(𝑢) = 𝑅(𝑌𝑛)′𝑢 + (𝑋𝑛 − 1′𝑢)𝑟𝑓(𝑌𝑛) 

                 = 𝑟𝑓(𝑌𝑛)𝑋𝑛 + 𝑅𝑒(𝑌𝑛)′𝑢 
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where 1' = (1,1,...,1) is the column vector consisting of ‘m’ ones. In a multi-period 

set-up, the wealth is reinvested recursively in each period using this equation. 

The assumptions regarding the model formulation can be summarized as 

follows: (a) There is unlimited borrowing and lending at the prevailing return of 

the riskless asset in any period, (b) Short selling is allowed for all assets in all 

periods, (c) No capital additions or withdrawals are allowed throughout the 

investment horizon, and (d) Transaction costs and fees are negligible. 

 

  3.  Power Law with Exponential Cut off (PLEC) utility function 

A utility function U is a non-decreasing real valued function defined on 

real numbers. An individual may have various risk attitudes, which can be studied 

based on the first derivative of the utility function. The shape of the utility function 

also gives a notion of what exactly the investor puts in the risk concept. A risk-

averse utility will be convex; a risk seeking utility will be concave, whereas a risk 

neutral utility will be linear as described in Pratt (1964). 

Pratt (1964) and Arrow (1965) suggest the ratio  

A(x) = −U′′(x)/U′(x)    

  

as a measure of absolute risk aversion (ARA). ARA explains how, within, risk 

aversion the investor preferences change in wealth. When the first derivative of 

A(x) i.e., A'(x)<0 the utility exhibits decreasing absolute risk aversion (DARA), 

when A'(x)=0 it exhibits constant absolute risk aversion (CARA) and when 

A'(x)>0 it exhibits increasing absolute risk aversion (IARA). 

Also, within risk aversion, one can study the changes in investor 

preferences, with respect to percentage of wealth invested, with the help of the 

relative risk aversion (RRA) measure which is defined as 

𝑅(𝑥) = 𝑥𝐴(𝑥)     
  

  When the first derivative of R(x) i.e., R'(x)<0 the utility exhibits 

decreasing relative risk aversion (DRRA), when R'(x)=0, it exhibits constant 

relative risk aversion (CRRA) and, when R'(x)>0, it exhibits increasing relative 

risk aversion (IRRA). 

Arif and Pakkala (2014) have introduced a new utility function called as 

Power Law with Exponential Cut off (PLEC) utility which can exhibit all most all 

of these risk preference structures. The PLEC utility function is defined as, 

                                             𝑈(𝑥) = 𝜃 − 𝐶𝑒𝛽𝑥𝑥𝛼   (3.1) 
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for 

   

  𝛼 + 𝛽𝑥 < 0.       (3.2) 

     

Here θ is so chosen that it makes the value of the utility (if θ=0, the 

properties still hold), U, positive for all values of the wealth x > 0. C>0 is the 

coefficient of the utility function. Here, α and β are the parameters. (3.2) is a 

consequence of the condition, for any utility function, to have a positive first 

derivative.                                                                                                                   

The special cases 𝛼 = 0 gives us the exponential utility function and 𝛽 =
0 gives us the power utility function both of which are members of the HARA 

family. 

As described by Arif and Pakkala(2014), PLEC utility can represent a risk 

liking as well as a risk averse investor. Also within risk aversion it can cover 

investors who could be increasing absolute risk averse (IARA), decreasing 

absolute risk averse (DARA), constant absolute risk averse (CARA), increasing 

relative risk averse (IRRA), decreasing relative risk averse (DRRA) and constant 

relative risk averse (CRRA). 

 

4. Representation of an investor in the market through PLEC utility 

function. 

A financial market may contain various types of investors with varying 

degrees of risk. Once we know how the market utility function behaves, we can 

check whether the market contains investors having PLEC utility or not. 

Rosenberg and Engle (2002) and Detlefsenet. al (2008) have worked in the 

area of estimating the market utility function based on the empirical pricing kernel.  

They explain how, based on a market reflecting index, empirical pricing kernels 

can be estimated. The estimation procedure is based on historical and risk neutral 

densities and these distributions are derived with stochastic volatility models that 

are widely used in industry. Detlefsenet. al(2008)then describes a method to obtain 

individual investor utility function from the market utility function.  

We have used the CNX NIFTY index of the national stock exchange 

(NSE) of India to estimate the empirical pricing kernel. As described by 

Detlefsenet. al(2008) the pricing kernel is obtained by estimating the risk neutral 

and the subjective density and then deriving the pricing kernel. This approach does 

not impose a strict structure on the kernel. Moreover, we use accepted parametric 

models because nonparametric techniques for the estimation of second derivatives 

depend a lot on the bandwidth selection although they yield the same pricing 

kernel behaviour over a wide range of bandwidths. For the risk neutral density we 

use Heston’s stochastic volatility model that is popular both in academia and in 
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industry. The historical density is more difficult to estimate because the drift is not 

fixed. Hence, the estimation depends more on the model and the length of the 

historical time series. The GARCH model is used for the historical density, which 

is the discrete version of the continuous model for the risk neutral density. 

To the market utility function we fit a PLEC utility function and we see 

that some portion of the market utility behaves in a PLEC manner. This implies 

that there is an investor(s) who have utilities behaving according to a PLEC utility 

function. The Figure 1 below shows the market and fitted PLEC utility functions. 

Figure 1.The estimated market utilities and the fitted PLEC utilities. 

 

The values of the parameters is obtained as θ=25.8815, α=-

49.4953 and β=2.1265. 

As described by Clausetet. al. (2009) the PLEC function is good in 

describing behaviour at extreme ends of the distributions. A similar observation is 

seen in Figure 1 as well. The investors in the lower end of wealth are very well 

represented with the help of the PLEC utility function with the parameters 

mentioned above. Similarly other sections of the market utility can be represented 

through other PLEC utility functions. For example an inward bend can be observed 
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in the market utility which indicated the presence of risk liking investors in the 

market this section can very well be represented again with PLEC utility with 

suitable parameters. 

Thus this shows that there is an investor in the market whose utility 

behaviour can very well be modelled through a PLEC utility function. Hence 

investors with PLEC utilities exist in the market and can very well be modelled 

with the PLEC function proposed by Arif and Pakkala (2014). This justifies the use 

of PLEC utility in our study. Moreover we recommend the use of PLEC utility 

because of its unique ability to represent risk liking as well as risk averse investors 

as mention in section 3. 

  5. General distribution model and existence of optimum solution 

  In this study it is assumed that the distributions of the risky asset returns 

are arbitrary. The analysis in this section contains the proof of the existence of 

optimum solution for the PLEC utility described above. Then two special cases are 

mentioned where one of the parameters is taken to be zero, which gives the 

exponential and power model of utility function. The characteristics of the optimal 

investment policy for m=1 risky asset is also discussed here. 

  It is known that 𝑔(𝑖, 𝑥, 𝑢) is the expected utility using the investment 

policy u given that the market is in state i and the amount of money available for 

investment is x. Hence 

𝑔(𝑖, 𝑥, 𝑢) = ∑ 𝑄(𝑖, 𝑗)

𝑠

𝑗=1

𝐸[𝑈(𝑗, 𝑟𝑓𝑥 + 𝑅𝑒(𝑖)′𝑢)] 

= ∑ 𝑄(𝑖, 𝑗)𝜃𝑗

𝑠

𝑗=1

− ∑ 𝑄(𝑖, 𝑗)𝐶(𝑗)

𝑠

𝑗=1

𝑒𝛽𝑥𝑟𝑓𝐸[𝑒𝛽𝑅𝑒(𝑖)′𝑢(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)
𝛼

] 

where𝜃𝑗and 𝐶(𝑗)are positive constants. 

𝑔(𝑖, 𝑥, 𝑢) =  𝐾(𝑖) −  𝐶 ′(𝑖)𝑒𝛽𝑥𝑟𝑓𝐸[𝑒𝛽𝑅𝑒(𝑖)′𝑢(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)
𝛼

]                (5.1) 

where  𝐾(𝑖) = ∑ 𝑄(𝑖, 𝑗)𝜃𝑗
𝑠
𝑗=1 > 0 and   𝐶 ′(𝑖) = ∑ 𝑄(𝑖, 𝑗)𝐶(𝑗)𝑠

𝑗=1 > 0. 

  It can be easily seen that since every function inside the summation in (5.1) 

is monotone,𝑔(𝑖, 𝑥, 𝑢)is monotone in u for all x and i. Therefore to find the 

optimum portfolio of risky assets, it is enough if we set the gradient to zero so that 

the optimality condition becomes 

                                                ∇𝑘𝑔(𝑖, 𝑥, 𝑢) =
𝛿𝑔(𝑖, 𝑥, 𝑢)

𝛿𝑢𝑘
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  ∇𝑘𝑔(𝑖, 𝑥, 𝑢) = −𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓𝐸 [𝑒𝛽𝑅𝑒(𝑖)′𝑢𝑅𝑘
𝑒(𝑖)(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)

𝛼
[𝛽 +

𝛼

𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢
]] = 0                                                                                       (5.2) 

for all k.  

 Define 𝐴𝑘(𝑖, 𝑥, 𝑢) = −𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓𝐸 [𝑒𝛽𝑅𝑒(𝑖)′𝑢𝑅𝑘
𝑒(𝑖)(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)

𝛼
[𝛽 +

𝛼

𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢
]] = 0 so that the optimality condition (5.2) can be written for all m 

assets as, 

 𝐴(𝑖, 𝑥, 𝑢) = [𝐴1(𝑖, 𝑥, 𝑢), 𝐴2(𝑖, 𝑥, 𝑢), … , 𝐴𝑚(𝑖, 𝑥, 𝑢)] = [0,0, … ,0]         (5.3) 

 Lemma 5.1:The function 𝐴𝑘(𝑖, 𝑥, 𝑢) and hence𝐴(𝑖, 𝑥, 𝑢) are strictly decreasing 

in 𝑢𝑘 for all 𝑥, 𝑖 and𝑘. 

This follows  by noting that, 

 
𝛿𝐴𝑘(𝑖,𝑥,𝑢)

𝛿𝑢𝑘
     = −𝐶′(𝑖)𝑒

𝛽𝑥𝑟𝑓𝑅𝑘
𝑒(𝑖)𝐸 [𝑒𝛽𝑅𝑒(𝑖)′𝑢(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)

𝛼
[𝛽2𝑅𝑘

𝑒(𝑖) +

2𝛼𝑅𝑘
𝑒(𝑖)𝛽

𝑥𝑟𝑓+𝑅𝑒(𝑖)𝑢
  +  

𝛼(𝛼−1)𝑅𝑘
𝑒(𝑖)

(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢)
2]] < 0                                           (5.4) 

for all 𝑥, 𝑖 and 𝑘.This follows because of condition (3.2) which holds for any risk-

averse investor. 

 Theorem 5.1: The optimal policy is the unique continuously differentiable 

function 𝑢∗(𝑖, 𝑥) = [𝑢1
∗(𝑖, 𝑥), 𝑢2

∗(𝑖, 𝑥), … , 𝑢𝑚
∗ (𝑖, 𝑥)]that satisfies 𝐴(𝑖, 𝑥, 𝑢∗(𝑖, 𝑥)) =

0 for any x and all i. 

Proof: 

  For the existence of the optimal policy satisfying the optimality condition 

(5.2),consider the Hessian of the objective function g which is the symmetric 

matrix, 

 

                                  ∇𝑘,𝑙
2 𝑔(𝑖, 𝑥, 𝑢) =

𝛿∇𝑘𝑔(𝑖, 𝑥, 𝑢)

𝛿𝑢𝑙
=

𝛿2𝑔(𝑖, 𝑥, 𝑢)

𝛿𝑢𝑙𝛿𝑢𝑘
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 ∇𝑘,𝑙
2 𝑔(𝑖, 𝑥, 𝑢) = −𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓𝐸 [𝑒𝛽𝑅𝑒(𝑖)′𝑢𝑅𝑘

𝑒(𝑖) 𝑅𝑙
𝑒(𝑖)(𝑥𝑟𝑓 +

𝑅𝑒(𝑖)′𝑢)
𝛼−2

[(𝛽(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢) + 𝛼)2 − 𝛼]]                                                                                                  

(5.5)        

  For any vector 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑚], 

𝑧 ′(∇2𝑔(𝑖, 𝑥, 𝑢))𝑧 

=−𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓𝐸 [𝑒𝛽𝑅𝑒(𝑖)′𝑢(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢)
𝛼−2

[(𝛽(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢) + 𝛼)2 −

𝛼](∑ 𝑧𝑘𝑅𝑘
𝑒𝑚

𝑘=1 (𝑖))2]< 0 

Implying that the Hessian of 𝑔(𝑖, 𝑥, . )is negative definite for all i and x. 

Every negative definite matrix has an inverse which is also negative definite. The 

implicit function theorem can be applied to the optimality condition (5.2) which 

can be rewritten as  

∇𝑔(𝑖, 𝑥, 𝑢) = [∇1𝑔(𝑖, 𝑥, 𝑢), ∇2𝑔(𝑖, 𝑥, 𝑢), … , ∇m𝑔(𝑖, 𝑥, 𝑢)] = [0,0, … ,0]. 

Note that ∇𝑔(𝑖, 𝑥, 𝑢)is a continuously differentiable function. The Hessian 

in (5.4) gives the matrix of the first order derivatives of ∇𝑔(𝑖, 𝑥, 𝑢)with respect 

to𝑢 = [𝑢1, 𝑢2, … , 𝑢𝑚]. This is clearly invertible at any fixed point(𝑖, 𝑥, 𝑢), since itis 

negative definite. The proof is now immediate through the implicit function 

theorem for∇𝑔(𝑖, 𝑥, 𝑢) = 𝐴(𝑖, 𝑥, 𝑢) = 0. 

Therefore the existence and uniqueness of the optimal policy or portfolio 

𝑢∗is established, where 𝑢𝑘
∗ (𝑥)is the amount of money invested in asset k if the 

wealth of the investor is x. 

The structure of the three special cases of interest, that is considered here, 

will be seen in the following sub-sections. 

  5.1.Constant risk tolerance model 

If the risk tolerance of the investor is constant so that α= 0, then 

theoptimality condition (5.2) becomes𝐸 [𝑅𝑘
𝑒𝛽𝑒𝛽𝑅𝑒′

𝑢] = 0 for all k. Note that for 

β=0 a trivial solution is obtained. Therefore β ≠ 0 is to be considered. 

  5.2.Decreasing absolute risk tolerance model 

If the risk tolerance of the investor is decreasing so that β= 0, then the 

optimality condition (5.2) becomes 𝐸 [𝑅𝑘
𝑒𝛼(𝑥𝑟𝑓 + 𝑅𝑒′𝑢)

𝛼−1
] = 0 for all x and k. 

Note that for α=0 a trivial solution is obtained. Therefore α ≠ 0 is to be considered. 

  5.3. Risk tolerance with one risky and one risk-free asset 
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For this case, since the distribution of the risky asset is general, one needs 

to consider the generalized optimality condition (5.2).It is known that A(i, x, u)is 

decreasing in u. Note that  

𝐴𝑘(𝑖, 𝑥, 0) = −𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓   𝐸 [𝑅𝑘
𝑒(𝑖)(𝑥𝑟𝑓)

𝛼−1
[𝛽𝑥𝑟𝑓 + 𝛼]]

= −𝐶′(𝑖)𝑒𝛽𝑥𝑟𝑓(𝑥𝑟𝑓)
𝛼−1

[𝛽𝑥𝑟𝑓 + 𝛼]𝜇 

where 𝜇 = �̅� − 𝑟𝑓 is the mean of the excess return. Therefore, the sign of 

𝐴𝑘(𝑖, 𝑥, 0)depends on the sign of𝜇.  

Some of the characteristics on the structure of the optimum policy can 

easily be seen as follows. If𝜇 > 0, i.e., the mean return of the risky asset exceeds 

that of the risk free asset then,𝐴𝑘(𝑖, 𝑥, 0) > 0  so that 𝑢∗(𝑖, 𝑥) > 0 since 

𝐴𝑘(𝑖, 𝑥, 𝑢)is strictly decreasing in u and the optimal decision satisfying 

𝐴𝑘(𝑖, 𝑥, 𝑢∗(𝑥)) = 0, is greater than zero for all x. This indicates that some positive 

amount of current wealth is invested in the risky asset. Moreover, when𝜇 < 0 we 

get,𝑢∗(𝑖, 𝑥) < 0,for all x by a similar argument. This indicates that since the return 

of risk free asset exceeds mean return of the risky asset the policy is to sell short 

the risky asset and to invest  𝑥 − 𝑢∗(𝑖, 𝑥) > 𝑥 in the risk free asset. 

 

6.  Dynamic programming solution based on the PLEC utility 

Now the dynamic programming equation and optimum portfolio, is 

obtained for an investor with varied risk preferences under the model described 

above. 

6.1. Individual risk tolerance model represented by PLEC utility 

function 

The optimum solution for the portfolio problem for an investor under this 

category can be summarised in Theorem 6.1 as: 

Theorem 6.1: Let the utility function of the investor be the PLEC function 

given by  

𝑈(𝑖, 𝑥) = 𝐾(𝑖) − 𝐶(𝑖)(𝑥 − 𝜂)𝛼𝑒𝛽𝑥 

for some 𝜂 > 0 and suppose that the risk-less asset return does not depend on the 

market state. Then, the optimal solution of the dynamic programming equation 

(5.5) is 

𝑣𝑛(𝑖, 𝑥) = 𝐾𝑛(𝑖) − 𝐶𝑛(𝑖)(𝑥 − 𝜂𝑛+1)𝛼𝑒𝑥𝛽𝑛+1 

and the optimal portfolio is, 
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                                         𝑢𝑛
∗ (𝑖, 𝑥) = 𝛾𝑛(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂𝑛+1)                       (6.1) 

    

where 

                𝜂𝑛 = 𝜂𝑇𝑟𝑓
𝑇−𝑛, 𝛽𝑛 =

𝛽

𝑟𝑓
𝑇−𝑛  𝐾𝑛−1 = 𝑄𝑇−𝑛𝐾 ,𝐶𝑛 = �̂�𝛼

𝑇−𝑛
𝐶          (6.2) 

 and  

�̂�𝛼(𝑖, 𝑗) = 𝑟𝑓
𝛼𝐸 [𝑒𝛽𝑛+1𝑅𝑒(𝑖)𝛾𝑛(𝑖,𝑥) (𝑟𝑓 + 𝑅𝑒(𝑖)′𝛾𝑛(𝑖, 𝑥))

𝛼
] 𝑄(𝑖, 𝑗) 

for n=0,1,...,T-1 where 𝛾𝑛(𝑖, 𝑥) satisfies, 

   𝐸 [𝑅𝑘
𝑒(𝑖)(𝑅𝑒(𝑖)′𝛾𝑛(𝑖, 𝑥) + 1)𝛼−1𝑒𝛽𝑛+1(𝑥−𝜂𝑛+1)𝑅𝑒(𝑖)′𝛾𝑛(𝑖,𝑥) (𝛼 + 𝛽𝑛+1(𝑥 −

𝜂𝑛+1)(1 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥)))] = 0                                                               (6.3) 

for all assets k=1,2,...,m, all states i  and all periods n. 

Proof: The induction starting with the boundary condition is used as, 

𝑣𝑇(𝑖, 𝑥) = 𝐾(𝑖) − 𝐶(𝑖)(𝑥 − 𝜂)𝛼𝑒𝑥𝛽 

and 

𝑔𝑇−1(𝑖, 𝑥, 𝑢) = ∑ 𝑄(𝑖, 𝑗)

𝑠

𝑗=1

𝐸 [𝑈 (𝑗, 𝑟𝑓𝑥 + 𝑅𝑒 ′
(𝑖)𝑢)] 

= ∑ 𝑄(𝑖, 𝑗) [𝐾(𝑗) − 𝐶(𝑗)𝐸[𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢)(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢 − 𝜂)
𝛼

]]

𝑠

𝑗=1

 

= 𝐾′(𝑖) − 𝐶′(𝑖)𝐸[𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢)(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢 − 𝜂)
𝛼

] 

is obtained, where 𝐾′(𝑖) = ∑ 𝑄(𝑖, 𝑗)𝐾(𝑖)𝑠
𝑗=1  and 𝐶′(𝑖) = ∑ 𝑄(𝑖, 𝑗)𝐶(𝑖)𝑠

𝑗=1  

Let 𝑢∗ be the optimal amount of money that should be invested in the risky 

asset so that 

𝑣𝑇−1(𝑖, 𝑥) = max
𝑢

𝑔𝑇−1(𝑖, 𝑥, 𝑢) = 𝑔𝑇−1(𝑖, 𝑥, 𝑢∗). 

One can see that the objection function 𝑔𝑇−1(𝑖, 𝑥, 𝑢) is in the form of a 

PLEC utility function. The assumption on the existence of an optimum solution 

implies that the optimal policy can be found using the first order condition, 
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𝐸 [𝑒
𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢𝑇−1

∗ (𝑖,𝑥))
(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢𝑇−1

∗ (𝑖, 𝑥) − 𝜂)
𝛼

𝑅𝑘
𝑒(𝑖) [𝛽

+
𝛼

𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢𝑇−1
∗ (𝑖, 𝑥) − 𝜂

]] = 0 

for all k=1,...,m. Defining the vector function 𝛾(𝑖, 𝑥) =
(𝛾1(𝑖, 𝑥), 𝛾2(𝑖, 𝑥), … , 𝛾𝑚(𝑖, 𝑥)) such that 𝛾(𝑖, 𝑥) = 𝑢∗(𝑖, 𝑥)/(𝑥𝑟𝑓 − 𝜂)one 

obtains𝑢∗(𝑖, 𝑥) = 𝛾(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂) so that the optimality condition can be re- 

written as, 

𝐸 [𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾(𝑖,𝑥)(𝑥𝑟𝑓−𝜂))(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂) − 𝜂)
𝛼

𝑅𝑘
𝑒(𝑖) [𝛽

+
𝛼

𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂) − 𝜂
]] = 0 

Or 

𝐸 [𝑒𝛽(𝑅𝑒(𝑖)′𝛾(𝑖,𝑥)(𝑥𝑟𝑓−𝜂))(1 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥))
𝛼−1

𝑅𝑘
𝑒(𝑖)[𝛽(𝑥𝑟𝑓

+ 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂) − 𝜂) + 𝛼]] = 0 

The value function at time T-1 is re-written for the optimal policy as, 

𝑣𝑇−1(𝑖, 𝑥) 

= 𝐾′(𝑖) − 𝐶′(𝑖)𝐸[𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾(𝑖,𝑥)(𝑥𝑟𝑓−𝜂))(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂) − 𝜂)
𝛼

] 

= 𝐾′(𝑖) − 𝐶′(𝑖)𝐸[(𝑥𝑟𝑓 − 𝜂)𝛼𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾(𝑖,𝑥)(𝑥𝑟𝑓−𝜂))(1 + 𝑅𝑒(𝑖)′𝛾(𝑖, 𝑥))
𝛼

] 

= 𝐾′(𝑖) − �̂�𝛼𝐶′(𝑖)(𝑥 − 𝜂/𝑟𝑓)𝛼𝑒𝛽𝑥𝑟𝑓 

= 𝐾′(𝑖) − �̂�𝛼𝐶′(𝑖)(𝑥 − 𝜂/𝑟𝑓)𝛼𝑒𝛽𝑥𝑟𝑓 

= 𝐾𝑇−1(𝑖) − 𝐶𝑇−1(𝑖)(𝑥 − 𝜂𝑇−1)𝛼𝑒𝛽𝑇−1𝑥 

and the value function is still PLEC like the utility function. This follows from 

noting that𝐾𝑇−1 = 𝐾′, 𝜂𝑇−1 = 𝜂/𝑟𝑓, 𝛽𝑇−1 = 𝛽𝑟𝑓and 𝐶𝑇−1 = �̂�𝛼𝐶′(𝑖).This 

completes the proof for n=T-1. 

Suppose now that the induction hypothesis holds for periods T, T-1, T-

2,...,n. Then for period n-1, 
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𝑔𝑛−1(𝑖, 𝑥, 𝑢) = ∑ 𝑄(𝑖, 𝑗)

𝑠

𝑗=1

𝐸[𝑣𝑛(𝑗, 𝑟𝑓𝑥 + 𝑅𝑒(𝑖)′𝑢)] 

𝑔𝑛−1(𝑖, 𝑥, 𝑢) = 𝐾 ′(𝑖) − 𝐶 ′(𝑖)𝐸 [𝑒𝛽(𝑥𝑟𝑓+𝑅𝑒′
(𝑖)𝑢)(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢 − 𝜂)

𝛼
]       (6.4) 

Once again the objective function is of the form (5.1). The assumption 

regarding the existence of optimal solution implies that the optimal policy can be 

found using the first order condition 

𝐸 [𝑒
𝛽𝑛(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝑢𝑛−1

∗ (𝑖,𝑥))
(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝑢𝑛−1

∗ (𝑖, 𝑥) − 𝜂𝑛)
𝛼

𝑅𝑘
𝑒(𝑖) [𝛽𝑛

+
𝛼

𝑥𝑟𝑓 + 𝑅𝑒(𝑖)𝑢𝑛−1
∗ (𝑖, 𝑥) − 𝜂𝑛

]] = 0 

and letting 𝛾𝑛−1(𝑖, 𝑥) = 𝑢𝑛−1
∗ (𝑖, 𝑥)/(𝑥𝑟𝑓 − 𝜂𝑛)one obtains the optimum policy as  

𝑢𝑛−1
∗ (𝑖, 𝑥) = 𝛾𝑛−1(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂𝑛), where 𝛾𝑛−1(𝑖, 𝑥) satisfies 

𝐸 [𝑒𝛽𝑛(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖,𝑥)(𝑥𝑟𝑓−𝜂𝑛))(𝑥𝑟𝑓 + 𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂𝑛)

− 𝜂)
𝛼

𝑅𝑘
𝑒(𝑖) [𝛽𝑛 +

𝛼

𝑥𝑟𝑓 + 𝑅𝑒(𝑖)𝛾𝑛−1(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂𝑛) − 𝜂
]] = 0 

For k=1,2,...,m. If one inserts the optimal policy in the value function using (6.4) it 

can be seen that, 

𝑣𝑛−1(𝑖, 𝑥) 

= 𝐾′𝑛(𝑖) − 𝐶′𝑛(𝑖)𝐸[𝑒𝛽𝑛(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖,𝑥)(𝑥𝑟𝑓−𝜂𝑛))(𝑥𝑟𝑓

+ 𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖, 𝑥)(𝑥𝑟𝑓 − 𝜂𝑛) − 𝜂𝑛)
𝛼

]    

= 𝐾′𝑛(𝑖)

− 𝐶′𝑛(𝑖)𝐸 [(𝑥𝑟𝑓 − 𝜂𝑛)
𝛼

𝑒𝛽𝑛(𝑥𝑟𝑓+𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖,𝑥)(𝑥𝑟𝑓−𝜂𝑛)) (1

+ 𝑅𝑒(𝑖)′𝛾𝑛−1(𝑖, 𝑥))
𝛼

] 

= 𝐾′𝑛(𝑖) − �̂�𝛼𝐶′𝑛(𝑖)(𝑥 − 𝜂𝑛/𝑟𝑓)𝛼𝑒𝛽𝑛𝑟𝑓 

= 𝐾𝑛−1(𝑖) − 𝐶𝑛−1(𝑖)(𝑥 − 𝜂𝑛−1)𝛼𝑒𝛽𝑛−1𝑥 
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and the value function is still PLEC. Note that the recursions 𝐾𝑛−1 = 𝐾′𝑛𝜂𝑛−1 =
𝜂𝑛/𝑟𝑓, 𝛽𝑛−1 = 𝛽𝑛𝑟𝑓    and 𝐶𝑛−1 = �̂�𝛼𝐶′𝑛 with boundary values 𝐶𝑇 = 𝐶,𝜂𝑇 = 𝜂 

and 𝛽𝑇 = 𝛽 give the explicit solutions in (6.2). This completes the proof. 

The solution of exponential (α=0) and power(β=0) model is a special case 

of this model which is already been stated and proved by Çanakoğlu and 

Özekici(2009). 

From the model solution we see that the optimum policy depends on the 

state of the market, period of investment and wealth of the investor. The model 

solution also depends on the joint distribution of the risky asset returns as 

prescribed by (6.3) in a given market state, irrespective of future expectations on 

the stochastic market. Another important feature is the dependence of the optimal 

policy on the period of investment. This condition makes sure that with every 

changing period the policy itself could be different. This model can incorporate 

more risk preference structures that investors can exhibit with the change in state 

of the market and their wealth.  

6.2. PLEC utility function with η=0 

Theorem 6.2: Let the utility function of the investor be the PLEC function 

given by  

𝑈(𝑖, 𝑥) = 𝐾(𝑖) − 𝐶(𝑖)(𝑥)𝛼𝑒𝛽𝑥 

the optimal solution of the dynamic programming equation (5.5) is 

𝑣𝑛(𝑖, 𝑥) = 𝐾𝑛(𝑖) − 𝐶𝑛(𝑖)(𝑥)𝛼𝑒𝑥𝛽𝑛+1 

and the optimal portfolio is, 

                                         𝑢𝑛
∗ (𝑖, 𝑥) = 𝛾𝑛(𝑖, 𝑥)𝑥𝑟𝑓(𝑖)                              (6.5) 

    

where 

 𝛽𝑛 =
𝛽

𝑟𝑓
𝑇−𝑛  𝐾𝑛−1 = 𝑄𝑇−𝑛𝐾 ,  𝐶𝑛 = �̂�𝛼

𝑇−𝑛
𝐶 and                               (6.6) 

�̂�𝛼(𝑖, 𝑗) = 𝑟𝑓
𝛼(𝑖)𝐸[𝑒𝛽𝑛+1𝑅𝑒(𝑖)𝛾𝑛(𝑖,𝑥)(1 + 𝑅𝑒(𝑖)′𝛾𝑛(𝑖, 𝑥))

𝛼
]𝑄(𝑖, 𝑗) 

for n=0,1,...,T-1 where 𝛾𝑛(𝑖, 𝑥) satisfies, 

(6.7)𝐸 [𝑅𝑘
𝑒(𝑖)(𝑅𝑒(𝑖)′𝛾𝑛(𝑖, 𝑥) + 1)𝛼−1𝑒𝛽𝑛+1𝑥𝑅𝑒(𝑖)′𝛾𝑛(𝑖,𝑥) (𝛼 + 𝛽𝑛+1𝑥(1 +

𝑅𝑒(𝑖)′𝛾𝑛(𝑖, 𝑥)))] = 0 

for all assets k=1,2,...,m and all i. 
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Proof: The proof is similar to the proof of Theorem 6.1 and will not be 

repeated here. 

In this special case η=0, it is clear that the optimal policy in (6.5) is not 

myopic since there is dependence on n. This property is unlike other utility 

functions considered by Çanakoğlu andÖzekici (2009, 2010) At any time n, the 

total amount of money invested in the risky assets depends on the market state i 

and wealth x as well. Since the total risky investment is 1′𝑢𝑛
∗ (𝑖, 𝑥) =

1′𝛾𝑛(𝑖, 𝑥)𝑥𝑟𝑓(𝑖) it follows that x𝑟𝑓(𝑖) ∑ 𝛾𝑛
𝑘(𝑖, 𝑥)𝑚

𝑘=1  is the portion of total wealth 

that is invested in the risky assets if the market is in state i and the period is n. Also 

observe that for PLEC utility, the composition of the portfolio depends on the 

market state, investment period as well as the wealth. 

If stock prices are dependent on the previous day’s price, then it follows a 

Markov chain. When stock prices depend on the previous two days it does not 

follow a Markov chain. However by redefining the state space we can modify the 

process as a Markov chain.  Similarly when the stock prices depend on the 

previous three days the prices can be modelled as a Markov Chain by extending 

and redefining the states.  Hence, Markov chain can be used to model the stock 

prices in many situations. In the following example it is assumed that the price 

depends on previous two days. 

7. Illustrations 

In this section, computational issues are addressed and it is demonstrated 

how the results obtained can be put to work, through a numerical illustration, for 

the PLEC utility under the various cases. Consider a market with three risky assets 

and one riskless asset where the returns of the risky assets follow an arbitrary 

multivariate distribution. The illustration is based on data obtained during 

September 2003 to September 2013 from daily return information of three assets    

( Reliance, ACC and Tata Steel) traded in National stock exchange; and the daily 

respective treasury rate of RBI. The states of the market are classified by 

considering whether the S&P CNX Nifty index went up or down during the 

previous 2 days. Therefore, in order to model prices as a Markov chain, 4 states are 

defined and labelled as 1=(up, up), 2=(up, down), 3= (down, up), and 4= (down, 

down) depending on the movement of prices on previous days. The daily interest 

rates for all states were approximately equal to 1 and our assumption is satisfied. 

Let the transition matrix be denoted as Q. Some of the transitions are not possible 

because of the manner in which the states are defined. For example, the transition 

from state 1 to state 3 is not possible. This is so, because in state 1 the market has 

gone up twice and in state 3 the market has gone down first and then up. Hence the 

two states do not overlap, which averts this transition. 



 

 

 

 

 

 

 

 
Portfolio Selection Using Power Law With Exponential Cut-Off Utility Function 
 

Using historical data the transition probability matrix Q of the Markov 

chain is obtained as, 

𝑄 = [

0.306 0.694 0 0
0 0 0.371 0.629

0.577 0.423 0 0
0 0 1 0

] 

Notice that in the above given transition probability matrix, although theoretically 

possible, there is no transition from state 4 to state 4. 

 

 

Table 1.The return from the riskless asset and the expected return of each 

risky asset for each state 

i 𝑟𝑓  𝜇1(𝑖) 𝜇2(𝑖) 𝜇3(𝑖) 

1 1.0002 1.012 1.008 1.011 

2 1.0002 0.999 0.999 0.999 

3 1.0002 1.004 1.002 1.002 

4 1.0002 0.990 0.994 0.991 

 

and the covariance matrices for the four states are 

𝛴(1) = (
0.419 0.169 0.241
0.169 0.358 0.177
0.241 0.177 0.615

)         𝛴(2) = (
0.269 0.097 0.169
0.097 0.298 0.148
0.169 0.148 0.686

) 

𝛴(3) = (
0.298 0.107 0.169
0.107 0.301 0.133
0.169 0.133 0.133

)         𝛴(4) = (
0.882 0.149 0.245
0.149 0.350 0.198
0.245 0.198 0.646

) 

Note that these values are obtained by multiplying the actual numbers by 

1,000 for simplification. We consider the problem of investors with initial wealth x 

= Rs.100 who want to maximize the expected utility of terminal wealth.  

It is difficult to calculate optimal 𝛾(𝑖, 𝑥)values numerically for an arbitrary 

distribution using (6.3). The approach here is similar to Çanakoğlu and Özekici 

(2009, 2010) i.e., is to use Taylor series expansion of the utility function around 

the expected value �̅� = 𝐸[𝑊] of the terminal wealth 𝑊 = 𝑋𝑇. Jondeau and 

Rockinger (2006) gives a detailed discussion on the benefits, advantages and 

disadvantages of using Taylor series expansion in optimal portfolio allocation. In 
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particular, they give a convincing argument for using the first 4 moments in the 

approximation. From the data it is recognized that the return distributions have 

very small skew-ness and kurtosis, so it was decided to use the first four moments. 

Taylor series expansion is  

𝑈(𝑊) = ∑ 𝑈(𝑗)(�̅�)
(𝑊 − �̅�)𝑗

𝑗!

+∞

𝑗=0

 

where𝑈(𝑗)(�̅�) is the jth derivative of the utility function at �̅�. Taking expectations 

the above equation can be written as, 

𝐸[𝑈(𝑊)] = 𝑈(�̅�) +
1

2!
𝑈2(�̅�)𝜇𝑝

2 +
1

3!
𝑈3(�̅�)𝜇𝑝

3 +
1

4!
𝑈4(�̅�)𝜇𝑝

4 + 𝐸[𝑅4(𝑊, �̅�)] 

              (7.1) 

where𝑅4(𝑊, �̅�) is the remainder for the first four moments and 𝜇𝑝
𝑛 is the nth 

moment of the portfolio defined as 

𝜇𝑝
2 = 𝐸[(𝑊 − �̅�)𝑛] 

Using the definitions in Jondeau and Rockinger(2006) for any market 

state, the second moment can be expressed as 

𝜇𝑝
2 = 𝛾′𝑀2𝛾 

where𝑀2 = 𝜮(. ) is the covariance matrix. Similarly  

𝜇𝑝
3 = 𝛾′𝑀3(𝛾 ⊗ 𝛾) 

where ⊗ is the Kronecker product, and M3 is the 3 x 9 co-skewness matrix defined 

as 

𝑀3 = [

𝑠111 𝑠112 𝑠113

𝑠121 𝑠122 𝑠123

𝑠131 𝑠132 𝑠133

|

𝑠211 𝑠212 𝑠213

𝑠221 𝑠222 𝑠223

𝑠231 𝑠232 𝑠233

|

𝑠311 𝑠312 𝑠313

𝑠321 𝑠322 𝑠323

𝑠331 𝑠332 𝑠333

] 

with 

𝑠𝑖𝑗𝑘 = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑗 − 𝜇𝑗)(𝑅𝑘 − 𝜇𝑘)] 

for i, j,k=1,2,3. Finally, 

𝜇𝑝
4 = 𝛾′𝑀4(𝛾 ⊗ 𝛾 ⊗ 𝛾) 

where 𝑀4 is the 3 x 27 co-kurtosis matrix with elements 

𝑘𝑖𝑗𝑘𝑙 = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑗 − 𝜇𝑗)(𝑅𝑘 − 𝜇𝑘)(𝑅𝑙 − 𝜇𝑙)] 
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for i,j,k,l=1,2,3. 

For PLEC utility function  

𝑈(𝑥) = −𝑒𝛽𝑥(𝑥 − 𝜂)𝛼 

Equation (7.1) can be written as, 

𝐸[𝑈(�̅�)] ≅ [−𝑒𝛽𝑊(𝑊 − 𝜂)𝛼 −
1

2
𝑒𝛽𝑊(𝑊 − 𝜂)𝛼−2[[𝛼 + 𝛽(𝑊 − 𝜂)]2 − 𝛼]𝜇𝑝

2

−
1

6
𝑒𝛽𝑊(𝑊 − 𝜂)𝛼−3[3(𝑊 − 𝜂)(−𝛼𝛽 + 𝛽𝛼2) + 3(𝑊 − 𝜂)2𝛽2𝛼

+ (𝑊 − 𝜂)3𝛽3 − 3𝛼2 + 2𝛼]𝜇𝑝
3

−
1

24
𝑒𝛽𝑊(𝑊 − 𝜂)𝛼−4[(𝑊 − 𝜂)4𝛽3 + (𝑊 − 𝜂)3𝛼𝛽3 + 3𝛽3𝛼)

+ 3(𝑊 − 𝜂)2(𝛽2𝛼2 − 𝛽2𝛼 − 𝛼𝛽 + 𝛽𝛼2) + (𝑊 − 𝜂)(6𝛼𝛽

+ 3𝛽𝛼3 − 9𝛽𝛼2 − 3𝛼2 + 2𝛼)]𝜇𝑝
4] 

Based on Theorem 6.1, take 𝑊 = 𝑥𝑟𝑓(𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 1), in the Taylor series 

expansion (7.1). When the data was checked, both covariances and expected excess 

returns are of the order 0.01. So for𝑊 = 𝑥𝑟𝑓(𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 1), it can be supposed 

that0 < 𝑊 < 2�̅� . Then based on the study by Loistl (1976), it can be said that the 

series converges most of the time. The Taylor series expansion is given in the 

Appendix.  

Consider the PLEC utility where 3 types of investors are studied. Cases 

where the investor has his risk preferences as IARA(𝛼 = 1, 𝛽 = −5),as 

CARA(𝛼 = 0, 𝛽 = −1)and as DARA (𝛼 = 1, 𝛽 = 0) are considered here. Let 

η=99 and C(i) and K(i)=1. 

Illustration 1:  

Consider an investor having his risk preference as IARA with 

parameters(𝛼 = 1, 𝛽 = −5). Now substitute these parameter values in the Taylor 

series expansion of (7.1) (given in Appendix) and take the gradient with respect to 

𝛾(𝑖, 𝑥) and set it to equal to zero. Thus the first order condition from which the 

optimal 𝛾(𝑖, 𝑥)values are determined numerically using R program for each market 

state is obtained. The computational time was less than a half a minute on a laptop 

with 2.1 GHz process. 

The optimal 𝛾for the rest of the periods can be obtained similarly by using the 

normalized values of η and β for different periods. The corresponding optimal 

investment amount is given as, 
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Table 2.Optimal amounts to be invested in each of the assets for each of the 

states 

      State 

Asset                  1 2 3 4 

Reliance 6.489 -1.188 2.193 -1.958 

ACC 2.881 -0.087 0.797 -2.102 

Tata Steel 2.105 -0.133 -0.053 -2.107 

Risk free asset 88.526 101.409 97.062 106.167 

 

Notice that since the investor is risk-averse, large proportion of the wealth 

is invested in the risk free asset. The negative signs indicate short selling. Also the 

result suggests that one need not short sell if the market is in state 1 where in the 

market has moved up twice. This observation is quite logical for any investor in the 

real world. Similarly when the market has gone down previously a risk averse 

investor may short sell all the risky assets and invest more in the risk free asset. 

One can clearly observe these points from Table 2. 

Illustration 2: 
Consider an investor having his risk preference asCARA with 

parameters(𝛼 = 0, 𝛽 = −1). The procedure similar to as done in illustration 1 is 

applied. The corresponding optimal investment amount is given as, 

 

Table 3.Optimal amounts to be invested in each of the assets for each of the 

states 

      State 

Asset                  1 2 3 4 

Reliance 18.792 -5.861 10.469 -7.677 

ACC 8.342 -0.431 3.806 -8.242 

Tata Steel 6.096 -0.659 -0.253 -8.261 

Risk free asset 66.771 106.951 85.979 124.181 

 

 The observations regarding the amounts to be invested are similar to that 

of Illustration 1. 
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Illustration 3: 
Consider an investor having his risk preference as DARA with 

parameters(𝛼 = 1, 𝛽 = 0). The procedure similar to as done in illustration 1 is 

applied. The corresponding optimal investment amount is given as, 

 

Table 4.Optimal amounts to be invested in each of the assets in each of the 

state 

      State 

Asset                  1 2 3 4 

Reliance 778.378 -291.500 512.189 -344.777 

ACC 345.814 -21.454 186.208 -370.158 

Tata Steel 252.813 -32.760 -12.386 -370.996 

Risk free asset -1277.005 445.714 -586.011 1185.932 

 

Notice that the policy suggests a large amount to be de-invested in the risk 

free asset for state 1 and 3 where in the market has moved up in the last period. 

This happens because the investor considered here is of type DARA. Thus as he is 

willing to take more risk as the market moves up, the investor may put a larger 

proportion of his wealth in the risky assets and vice-versa in state 2 and 4. 

Illustration 4: 
In this illustration we have considered a situation where the investor has 

his risk preference to be changing in each state to IARA, CARA and DARA with 

parameters(𝛼𝑖 , 𝛽𝑖) = {(1,5), (0, −1), (0, −0.5), (−1,0)}respectively. The 

procedure similar to as done in illustration 1is applied.The corresponding optimal 

investment amount is given as, 

 

Table 5.Optimal amounts to be invested in each of the assets in each of the 

state 

            State 

Asset                  1 2 3 4 

Reliance 6.489 -5.861 10.584 -344.041 

ACC 2.881 -0.431 3.848 -369.364 

Tata Steel 2.105 -0.659 -0.256 -370.249 

Risk free asset 88.526 106.951 85.824 1183.654 
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This illustration shows how one can consider different risk preferences of 

investors based on each state to obtain the optimum policy. In reality an investor 

may change his risk preference based on the state of the market. Hence it becomes 

an important part of the study that this scenario is also considered. This type of 

study is possible only through the PLEC utility as it incorporates all these types of 

risk preference structures. Hence one is free from any bias in the optimum policy 

that could occur because of the change in form of the utility. 

Implications of an ignorant investment strategy 

Suppose an investor does not use any information about the variation of 

the states of the market. He just knows what type of risk preference he possesses. 

The solution for such an investor obtained without dynamic programming, is a 

suboptimal solution compared to the one obtained through dynamic programming. 

This can be shown by obtaining the optimal policy for a single period by solving 

the first order condition equation (5.3) and utility of an IARA preference type 

investor.  

If we apply this policy for Rs. 1000 investment and compare it with the dynamic 

problem solution in each state for the same utility function and initial wealth the 

following loss in rupees will occur: 

Table 6. Loss of wealth in rupees for Rs. 1000 invested using the policy 

obtained from first order condition rather than dynamic programming 

State  1  2  3  4  

Loss  1.03  1.05  1.05  1070.09  

 

Thus Table 6 suggests that one may incur lesser profit if dynamic 

programming technique is not used to obtain the optimal policy for a multiple 

period horizon problem. 

 

8. Conclusions 

PLEC utility is recommended here for studying the investor preferences 

and for obtaining an optimal policy to the portfolio allocation problem of the 

various types of risk-averse investors. This makes the optimum policy obtained to 

be free from any bias due to change in the form of the utility function considered. 

A direct solution to a single period problem is obtained based on this utility. Price 

variation is modelled through a Markov chain. The optimal decision in a multi-

period setting is obtained using dynamic programming. 
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In both the investment horizons, it is noticed that the decision depends on 

the wealth invested and the state of the market. In the multi-period setting the 

optimal policy depends on the period of investment as well. Thus it is noticed that 

using the PLEC utility provides us a non-myopic policy which is otherwise not 

possible when any other utility function is used. 

Four illustrations are shown which discuss about three different kinds of 

investors. The investors are represented through different PLEC utilities. Optimal 

policies can be compared for each investor type without bothering about the bias 

that could have occurred by the use of different forms of utility functions. This 

type of study is possible uniquely through PLEC utility because of its wide ranged 

behaviour regarding risk-averse preferences. It is seen that not bothering about the 

market’s stochastic state may lead to lesser profit for the investor. Hence we 

recommend the use of PLEC utility function to represent the various investors in 

the market. So also based on this utility, we suggest using the method described 

here to obtain the optimal portfolio solutions for the investors under consideration. 

 

Appendix 

Based on Theorem 6.1, take 𝑊 = 𝑥𝑟𝑓(𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 1), in the Taylor series 

expansion (7.1). Therefore the Taylor series expansion can be used as, 

𝐸 [𝑈 (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓))]

≅ [−𝑒
𝛽((𝑥𝑟𝑓−𝜂)𝑅𝑒′

𝛾(𝑖,𝑥)+𝑥𝑟𝑓)
(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′

𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)
𝛼

−
1

2
𝑒

𝛽((𝑥𝑟𝑓−𝜂)𝑅𝑒′
𝛾(𝑖,𝑥)+𝑥𝑟𝑓)

(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓)

− 𝜂)
𝛼−2

[[𝛼 + 𝛽 (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)]

2

− 𝛼] 𝜇𝑝
2

−
1

6
𝑒

𝛽((𝑥𝑟𝑓−𝜂)𝑅𝑒′
𝛾(𝑖,𝑥)+𝑥𝑟𝑓)

(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓)

− 𝜂)
𝛼−3

[3 (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂) (−𝛼𝛽 + 𝛽𝛼2)

+ 3 (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)

2

𝛽2𝛼

+ (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)

3

𝛽3 − 3𝛼2 + 2𝛼] 𝜇𝑝
3] 
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−
1

24
𝑒

𝛽((𝑥𝑟𝑓−𝜂)𝑅𝑒′
𝛾(𝑖,𝑥)+𝑥𝑟𝑓)

(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓)

− 𝜂)𝛼−4 [(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)4𝛽3

+ (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)3𝛼𝛽3 + 3𝛽3𝛼)

+ 3(((𝑥𝑟𝑓 − 𝜂)𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)2(𝛽2𝛼2 − 𝛽2𝛼 − 𝛼𝛽

+ 𝛽𝛼2) + (((𝑥𝑟𝑓 − 𝜂)𝑅𝑒 ′
𝛾(𝑖, 𝑥) + 𝑥𝑟𝑓) − 𝜂)(6𝛼𝛽 + 3𝛽𝛼3

− 9𝛽𝛼2 − 3𝛼2 + 2𝛼)]𝜇𝑝
4 

 

REFERENCES 

 

[1] Arif, A. H. and Pakkala,T. P. M. (2014),Power Law with Exponential Cut 

Off Utility. Metamorphosis- A Journal of Management Research, IIM 

Lucknow. 13, 1-6; 

[2] Arrow, K.J. (1965), Aspects of the Theory of Risk-bearing. 

Helsinki,Yrjö:Hahnsson Foundation; 

[3] Bernoulli, D. (1954), Exposition of a new Theory on the Measurement of 

Risk (English Transl. by Louise Sommer). Econometrica, 22, 23–36; 

[4] Bielecki, T.R., Hernández-Hernández, D., and Pliska, S. R. (1999),Risk 

Sensitive Control of Finite State Markov Chains in Discrete Time with 

Applications to Portfolio Management. Mathematical Methods of Operations 

Research, 50, 167–88; 

[5] Çelikyurt, U. and Özekici, S.(2007), Multiperiod Portfolio Optimization 

Models in Stochastic Markets Using the Mean-variance Approach. 

European Journal of Operational Research, 179, 186–202; 

[6] Çanakoğlu, E. and Özekici, S. (2009), Portfolio Selection in Stochastic 

Markets with Exponential Utility Functions. Annals of Operations 

Research, 166(1), 281-97; 

[7] Çanakoğlu, E. and Özekici, S.(2010), Portfolio Selection in Stochastic 

Markets with HARA Utility Functions. European Journal of Operational 

Research, 201(2), 520-36; 

[8] Clauset, A., C. R. Shalizi, andNewman ,M. E. J. (2009),Power-law 

distributions in empirical data.SIAM Review, 51(4), 661–703; 

  [9] Detlefsen K., W.K. Hardleand Moro, R.A. (2008), Empirical Pricing   

       Kernels and Investor Preferences. Mathematical methods in economics and   

       finance. 3(1), 19-48; 



 

 

 

 

 

 

 

 
Portfolio Selection Using Power Law With Exponential Cut-Off Utility Function 
 

[10]  Dokuchaev, N. (2007), Discrete Time Market with Serial Correlations and    

Optimal Myopic Strategies. European Journal of Operational Research, 177, 

1090-104; 

[11] Hernández-Hernández, D. and Marcus, S. I. (1999), Existence of Risk 

Sensitive Optimal Stationary Policies for Controlled Markov Processes. Applied 

Mathematics and Optimization, 40, 273–85; 

[12] Jondeau, E. and Rockinger, M. (2005),Optimal Portfolio Allocation under 

Higher Moments. European Financial Management, 12, 29-55; 

[13] Loistl, O. (1976),The Erroneous Approximation of Expected Utility by 

Means of a Taylor's series Expansion: Analytic and Computational Results. The 

American Economic Review, 66(5), 904-910; 

[14]Markowitz, H. M. (1952),Portfolio Selection. Journal of Finance, 7(1),      

77–91; 

[15]Merton R.C. (1969), Lifetime Portfolio Selection under Uncertainty: The 

Continuous-time Case. The Review of Economics and Statistics, 51, 247-57; 

[16]Merton, R.C. (1971),Optimum Consumption and Portfolio Rules in a 

Continuous-time Model. Journal of Economic Theory, 3, 373–413. 

[17] Mossin, J. (1968), Optimal Multiperiod Portfolio Policies. Journal of 

Business, 41, 215-29; 

[18] Nagai, H. and Peng, S. (2002), Risk-sensitive Dynamic Portfolio 

Optimization with Partial Information on Infinite Time Horizon. Annals of 

Applied Probability, 12, 173–95; 

[19] Pratt, J. (1964), Risk Aversion in the Small and in the Large. Econometrica, 

32,122-36; 

[20] Rosenberg J.and Engle, R. F. (2002), Empirical Pricing Kernels. Journal of 

Financial Economic, 64(3), 341–72; 

[21] Saha, A. (1993), Expo-power Utility: A Flexible Form for Absolute and 

Relative Risk Aversion. American Journal of Agricultural Economics, 75, 905-13; 

[22] Sharpe, W. F. (2007), Expected Utility Asset Allocation. Financial Analysts 

Journal, 5, 18-30; 

[23] Steinbach, M. C. (2001), Markowitz Revisited: Mean-variance Models in 

Financial Portfolio Analysis. Society for Industrial and Applied Mathematics 

Review, 43, 31–85; 

[24]Xie, D. (2000), Power Risk Aversion Utility Functions. Annals of Economics 

and Finance, 1, 265-82; 

[25] Yin, G., and Zhou, X. Y. (2004), Markowitz's Mean-variance Portfolio 

Selection with Regime Switching: From Discrete-time Models to their 

Continuous-time Limits. IEEE Transactions on Automatic Control, 49(3), 349-60. 


